Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arq Neuropsiquiatr ; 80(2): 192-207, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35352757

RESUMO

BACKGROUND: Neuropsychiatric disorders are a significant cause of death and disability worldwide. The mechanisms underlying these disorders include a constellation of structural, infectious, immunological, metabolic, and genetic etiologies. Advances in next-generation sequencing techniques have demonstrated that the composition of the enteric microbiome is dynamic and plays a pivotal role in host homeostasis and several diseases. The enteric microbiome acts as a key mediator in neuronal signaling via metabolic, neuroimmune, and neuroendocrine pathways. OBJECTIVE: In this review, we aim to present and discuss the most current knowledge regarding the putative influence of the gut microbiome in neuropsychiatric disorders. METHODS: We examined some of the preclinical and clinical evidence and therapeutic strategies associated with the manipulation of the gut microbiome. RESULTS: targeted taxa were described and grouped from major studies to each disease. CONCLUSIONS: Understanding the complexity of these ecological interactions and their association with susceptibility and progression of acute and chronic disorders could lead to novel diagnostic biomarkers based on molecular targets. Moreover, research on the microbiome can also improve some emerging treatment choices, such as fecal transplantation, personalized probiotics, and dietary interventions, which could be used to reduce the impact of specific neuropsychiatric disorders. We expect that this knowledge will help physicians caring for patients with neuropsychiatric disorders.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiologia , Humanos
2.
Arq. neuropsiquiatr ; 80(2): 192-207, Feb. 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1364363

RESUMO

ABSTRACT Background: Neuropsychiatric disorders are a significant cause of death and disability worldwide. The mechanisms underlying these disorders include a constellation of structural, infectious, immunological, metabolic, and genetic etiologies. Advances in next-generation sequencing techniques have demonstrated that the composition of the enteric microbiome is dynamic and plays a pivotal role in host homeostasis and several diseases. The enteric microbiome acts as a key mediator in neuronal signaling via metabolic, neuroimmune, and neuroendocrine pathways. Objective: In this review, we aim to present and discuss the most current knowledge regarding the putative influence of the gut microbiome in neuropsychiatric disorders. Methods: We examined some of the preclinical and clinical evidence and therapeutic strategies associated with the manipulation of the gut microbiome. Results: targeted taxa were described and grouped from major studies to each disease. Conclusions: Understanding the complexity of these ecological interactions and their association with susceptibility and progression of acute and chronic disorders could lead to novel diagnostic biomarkers based on molecular targets. Moreover, research on the microbiome can also improve some emerging treatment choices, such as fecal transplantation, personalized probiotics, and dietary interventions, which could be used to reduce the impact of specific neuropsychiatric disorders. We expect that this knowledge will help physicians caring for patients with neuropsychiatric disorders.


RESUMO Antecedentes: Os transtornos neuropsiquiátricos são uma importante causa de morte e invalidez no mundo. Os mecanismos subjacentes a esses transtornos incluem uma constelação de etiologias estruturais, infecciosas, imunológicas, metabólicas e genéticas. Avanços nas técnicas de sequenciamento do DNA têm demonstrado que a composição do microbioma entérico é dinâmica e desempenha um papel fundamental não apenas na homeostase do hospedeiro, mas também em várias doenças. O microbioma entérico atua como mediador na sinalização das vias metabólica, neuroimune e neuroendócrina. Objetivo: Apresentar os estudos mais recentes sobre a possível influência do microbioma intestinal nas diversas doenças neuropsiquiátricas e discutir tanto os resultados quanto a eficácia dos tratamentos que envolvem a manipulação do microbioma intestinal. Métodos: foram examinadas algumas das evidências pré-clínicas e clínicas e estratégias terapêuticas associadas à manipulação do microbioma intestinal. Resultados: os táxons-alvo foram descritos e agrupados a partir dos principais estudos para cada doença. Conclusões: Entender a fundo a complexidade das interações ecológicas no intestino e sua associação com a suscetibilidade a certas doenças agudas e crônicas pode levar ao desenvolvimento de novos biomarcadores diagnósticos com base em alvos moleculares. Além disso, o estudo do microbioma intestinal pode auxiliar na otimização de tratamentos não farmacológicos emergentes, tais como o transplante de microbiota fecal, o uso de probióticos e intervenções nutricionais personalizadas. Dessa forma, terapias alternativas poderiam ser usadas para reduzir o impacto dos transtornos neuropsiquiátricos na saúde pública. Esperamos que esse conhecimento seja útil para médicos que cuidam de pacientes com diversos transtornos neuropsiquiátricos.


Assuntos
Humanos , Microbioma Gastrointestinal/fisiologia
3.
Seizure ; 90: 80-92, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33762166

RESUMO

A growing appreciation that the intestinal microbiota might exert changes on the central nervous system via the gut-brain has emerged as a new research frontier in neurological disorders. Moreover, new approaches for studying and manipulating the gut microbiome, including metabolomics and faecal microbiota transplantation, have highlighted the tremendous potential that microbes have on neuroinflammation, metabolic, and neuroendocrine signaling pathways. Despite the large proliferation of studies in animal models examining the linkage between microbial disequilibrium and epilepsy, intestinal profiles at a functional level in humans have remained scarce. We reviewed the scientific evidence on gut microbiota's role in epilepsy, both in clinical and experimental studies, to better understand how targeting the gut microbiota could serve as a diagnostic or prognostic research tool. Likewise, translating microbial molecular mechanisms to medical settings could fill the gaps related to alternative therapies for patients with epilepsy, mainly in cases with refractory phenotypes.


Assuntos
Epilepsia , Microbioma Gastrointestinal , Animais , Encéfalo , Epilepsia/terapia , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-32021365

RESUMO

BACKGROUND: Familial multiple lipomatosis (FML) is an autosomal dominant disorder characterized by the slow growth of encapsulated nodules spread across the trunk and limbs. Currently, there is no specific etiology; therefore, its molecular and biological bases need to be better understood. High-throughput sequencing technologies appear to be a cost-effective tool and have a pivotal role in elucidating different genodermatoses. OBJECTIVE: This study aimed to perform a clinical and molecular characterization of constitutional DNA of seven individuals belonging to five unrelated families diagnosed with FML. PATIENTS AND METHODS: Clinical aspects were obtained from medical records and physical examination. HMGA2 gene was investigated using Sanger sequencing method. Mutational analysis of other genes associated with syndromic lipomatosis AKT1, APC, PIK3CA, MEN-1, and PTEN was performed through next-generation sequencing. RESULTS: In this series, FML was predominant among women who were overweight and reaching the age of thirty and was associated with gastrointestinal comorbidity. Histopathological diagnosis of biopsies revealed typical features of both lipoma and angiolipoma. We identified two identical novel variants with unknown significance in exon 5 of the HMGA2 gene in two participants of different families. There were no additional changes in exons 1 to 4 of the HMGA2 gene. Multi-gene panel was normal in all cases. CONCLUSION: Variants found in exon 5 of the HMGA2 gene have not been described and have an uncertain significance in the genesis of FML. Further studies, including a more significant number of affected individuals and functional analysis of the novel variants of HGMA2 gene, should be undertaken to better understand its biological role in FML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...